Abstract

Each symbiotic Chlorella of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole membrane derived from the host digestive vacuole membrane. Alga-free paramecia and symbiotic algae can grow independently. Mixing them experimentally can cause reinfection. Earlier, we reported that the symbiotic algae appear to push the host trichocysts aside to become fixed beneath the host cell cortex during the algal reinfection process. Indirect immunofluorescence microscopy with a monoclonal antibody against the trichocysts demonstrates that the trichocysts change their locality to form algal attachment sites and decrease their density beneath the host cell cortex through algal reinfection. Transmission electron microscopy to detect acid phosphatase activity showed that some trichocysts near the host cell cortex are digested by the host lysosomal fusion during algal reinfection. Removal of algae from the host cell using cycloheximide recovers the trichocyst's arrangement and number near the host cell cortex. These results indicate that symbiotic algae compete for their attachment sites with preexisting trichocysts and that the algae have the ability to ensure algal attachment sites beneath the host cell cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.