Abstract

The mechanism of action of Endostatin, an endogenous inhibitor of angiogenesis and tumor growth, remains unknown. We utilized phage-display technology to identify polypeptides that mimic the binding domains of proteins with which Endostatin interacts. A conformed peptide (E37) was identified that shares an epitope with human tropomyosin implicating tropomyosin as an Endostatin-binding protein. We show that recombinant human Endostatin binds tropomyosin in vitro and to tropomyosin-associated microfilaments in a variety of endothelial cell types. The most compelling evidence that tropomyosin modulates the activity of Endostatin was demonstrated when E37 blocked greater than 84% of the tumor-growth inhibitory activity of Endostatin in the B16-BL6 metastatic melanoma model. We conclude that the E37 peptide mimics the Endostatin-binding epitope of tropomyosin and blocks the antitumor activity of Endostatin by competing for Endostatin binding. We postulate that the Endostatin interaction with tropomyosin results in disruption of microfilament integrity leading to inhibition of cell motility, induction of apoptosis, and ultimately inhibition of tumor growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.