Abstract

BackgroundGenerally, extremophiles have been deemed to survive in the extreme environments to which they had adapted to grow. Recently many extremophiles have been isolated from places where they are not expected to grow. Alkaliphilic microorganisms have been isolated from acidic soil samples with pH 4.0, and thermophiles have been isolated from samples of low temperature. Numerous moderately halophilic microorganisms, defined as those that grow optimally in media containing 0.5–2.5 Molar (3–15%) NaCl, and halotolerant microorganisms that are able to grow in media without added NaCl and in the presence of high NaCl have been isolated from saline environments such as salterns, salt lakes and sea sands. It has tacitly been believed that habitats of halophiles able to grow in media containing more than 20% (3.4 M) are restricted to saline environments, and no reports have been published on the isolation of halophiles from ordinary garden soil samples.ResultsWe demonstrated that many halophilic bacteria that are able to grow in the presence of 20% NaCl are inhabiting in non-saline environments such as ordinary garden soils, yards, fields and roadways in an area surrounding Tokyo, Japan. Analyses of partial 16S rRNA gene sequences of 176 isolates suggested that they were halophiles belonging to genera of the family Bacillaceae, Bacillus (11 isolates), Filobacillus (19 isolates), Gracilibacillus (6 isolates), Halobacillus (102 isolates), Lentibacillus (1 isolate), Paraliobacillus (5 isolates) and Virgibacillus (17 isolates). Sequences of 15 isolates showed similarities less than 92%, suggesting that they may represent novel taxa within the family Bacillaceae.ConclusionThe numbers of total bacteria of inland soil samples were in a range from 1.4 × 107/g to 1.1 × 106/g. One tenth of the total bacteria was occupied by endospore-forming bacteria. Only very few of the endospore-forming bacteria, roughly 1 out of 20,000, are halophilic bacteria. Most of the halophilic bacteria were surviving as endospores in the soil samples, in a range of less than 1 to about 500/g soil. Samples collected from seashore in a city confronting Tokyo Bay gave the total numbers of bacteria and endospores roughly 1000 time smaller than those of inland soil samples. Numbers of halophilic bacteria per gram, however, were almost the same as those of inland soil samples. A possible source of the halophilic endospore originating from Asian dust storms is discussed.

Highlights

  • Extremophiles have been deemed to survive in the extreme environments to which they had adapted to grow

  • Phylogenetic analyses of the isolates suggested that they were halophiles belonging to genera of the family Bacillaceae

  • Halophilic bacteria are isolated from soil samples In the present study, we have demonstrated that halophilic bacteria that are able to grow in the presence of 20% NaCl are inhabiting almost everywhere in non-saline environments such as ordinary garden soils, yards, fields and roadways in an area surrounding Tokyo

Read more

Summary

Introduction

Extremophiles have been deemed to survive in the extreme environments to which they had adapted to grow. It has tacitly been believed that habitats of halophiles able to grow in media containing more than 20% (3.4 M) are restricted to saline environments, and no reports have been published on the isolation of halophiles from ordinary garden soil samples. Bacillus stearothermophilus ( Geobacillus stearothermophilus) and Clostridium thermoautotrophicus ( Moorella thermoautotrophica) were isolated from ordinary soil. Anaerobic bacteria such as methanogens, sulfate-reducers, and homoacetogens were isolated from rice paddies during dry fallow period, arable soils, and even from desert soils [4,5]. The notion that isolation of an organism from a given environment does not mean that the organism is growing in that environments, but just surviving is generally accepted

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call