Abstract

Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG-ODNs) function as powerful immune adjuvants by activating macrophages, dendritic cells, and B cells. However, the molecular recognition mechanism that initiates signaling in response to CpG-ODN has not fully been identified. We show in this study that peritoneal macrophages from SCID mice having mutations in the catalytic subunit of DNA-protein kinase (DNA-PKcs) were almost completely defective in the production of IL-10 and in ERK activation when treated with CpG-ODN. In contrast, IL-12 p70 production significantly increased. Furthermore, small interfering RNA (siRNA)-mediated knockdown of DNA-PKcs expression in the mouse monocyte/macrophage cell line RAW264.7 led to reduced IL-10 production and ERK activation by CpG-ODN. IL-10 and IL-12 p70 production, but not ERK activation, are blocked by chloroquine, an inhibitor of endosomal acidification. Endosomal translocation of CpG-ODN in a complex with cationic liposomes consisting of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (CpG-DOTAP-liposomes) decreased IL-10 production and ERK activation, whereas the endosomal escape of CpG-ODN in a complex with cationic liposomes consisting of DOTAP and dioleyl-phosphatidylethanolamine (DOPE) (CpG-DOTAP/DOPE-liposomes) increased. In contrast, IL-12 p70 production was increased by CpG-DOTAP-liposomes and decreased by CpG-DOTAP/DOPE-liposomes. IL-10 production induced by CpG-DOTAP/DOPE-liposomes was not observed in macrophages from SCID mice. Thus, our findings suggest that DNA-PKcs in the cytoplasm play an important role in CpG-ODN-induced production of IL-10 in macrophages. In addition, DNA-PKcs-mediated production of IL-10 and IL-12 p70 can be regulated by manipulating the intracellular trafficking of CpG-ODN in macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.