Abstract

The rise of biologics and RNA-based therapies challenges the limitations of traditional drug treatments. However, these potent new classes of therapeutics require effective delivery systems to reach their full potential. Lipid nanoparticles (LNPs) have emerged as a promising solution for RNA delivery, but endosomal entrapment remains a critical barrier. In contrast, natural extracellular vesicles (EVs) possess innate mechanisms to overcome endosomal degradation, demonstrating superior endosomal escape (EE) compared to conventional LNPs. This mini review explores the challenges of EE for lipid nanoparticle-based drug delivery, and offers insights into EV escape mechanisms to advance LNP design for RNA therapeutics. We compare the natural EE strategies of EVs with those used in LNPs and highlight contemporary LNP design approaches. By understanding the mechanisms of EE, we will be able to develop more effective drug delivery vehicles, enhancing the delivery and efficacy of RNA-based therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.