Abstract

In this study, we developed an endoscopic hyperspectral imaging (eHSI) system and evaluated its performance in analyzing tissues within tissue phantoms and orthotopic mouse pancreatic tumor models. Our custom-built eHSI system incorporated a liquid crystal tunable filter. To assess its tissue discrimination capabilities, we acquired images of tissue phantoms, distinguishing between fat and muscle regions. The system underwent supervised training using labeled samples, and this classification model was then applied to other tissue phantom images for evaluation. In the tissue phantom experiment, the eHSI effectively differentiated muscle from fat and background tissues. The precision scores regarding fat tissue classification were 98.3% for the support vector machine, 97.7% for the neural network, and 96.0% with a light gradient-boosting machine algorithm, respectively. Furthermore, we applied the eHSI system to identify tumors within an orthotopic mouse pancreatic tumor model. The F-score of each pancreatic tumor-bearing model reached 73.1% for the KPC tumor model and 63.1% for the Pan02 tumor models. The refined imaging conditions and optimization of the fine-tuning of classification algorithms enhance the versatility and diagnostic efficacy of eHSI in biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.