Abstract

Human β-endorphin administered intracisternally in a dose of 15 μg per rat increased striatal concentrations of the dopamine metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) as well as producing catalepsy. These effects were inhibited by naloxone. Pargyline-induced decreases in striatal DOPAC and HVA were greater in endorphin-treated than in saline-treated animals, supporting the concept that β-endorphin increases striatal dopamine turnover. β-endorphin increased the rate of decline in striatal dopamine concentration following synthesis inhibition with α-methyltyrosine, further suggesting that endorphin increases striatal dopamine turnover. β-endorphin and probenecid interacted competitively to decrease the effects of each other to increase striatal HVA. Naloxone prevented the effect of endorphin to decrease the HVA response to probenecid. Thus, probenecid cannot be used to assess the effects of endorphin on striatal dopamine turnover. If β-endorphin acts presynaptically to decrease dopamine release in striatum, the increases in striatal DOPAC and HVA probably represent a compensatory attempt to increase dopamine synthesis. Although turnover of dopamine to its metabolites is increased, dopamine release may be suppressed by β-endorphin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.