Abstract

Tether proteins attach the endoplasmic reticulum (ER) to other cellular membranes, thereby creating contact sites that are proposed to form platforms for regulating lipid homeostasis and facilitating non-vesicular lipid exchange. Sterols are synthesized in the ER and transported by non-vesicular mechanisms to the plasma membrane (PM), where they represent almost half of all PM lipids and contribute critically to the barrier function of the PM. To determine whether contact sites are important for both sterol exchange between the ER and PM and intermembrane regulation of lipid metabolism, we generated Δ-super-tether (Δ-s-tether) yeast cells that lack six previously identified tethering proteins (yeast extended synatotagmin [E-Syt], vesicle-associated membrane protein [VAMP]-associated protein [VAP], and TMEM16-anoctamin homologues) as well as the presumptive tether Ice2. Despite the lack of ER-PM contacts in these cells, ER-PM sterol exchange is robust, indicating that the sterol transport machinery is either absent from or not uniquely located at contact sites. Unexpectedly, we found that the transport of exogenously supplied sterol to the ER occurs more slowly in Δ-s-tether cells than in wild-type (WT) cells. We pinpointed this defect to changes in sterol organization and transbilayer movement within the PM bilayer caused by phospholipid dysregulation, evinced by changes in the abundance and organization of PM lipids. Indeed, deletion of either OSH4, which encodes a sterol/phosphatidylinositol-4-phosphate (PI4P) exchange protein, or SAC1, which encodes a PI4P phosphatase, caused synthetic lethality in Δ-s-tether cells due to disruptions in redundant PI4P and phospholipid regulatory pathways. The growth defect of Δ-s-tether cells was rescued with an artificial "ER-PM staple," a tether assembled from unrelated non-yeast protein domains, indicating that endogenous tether proteins have nonspecific bridging functions. Finally, we discovered that sterols play a role in regulating ER-PM contact site formation. In sterol-depleted cells, levels of the yeast E-Syt tether Tcb3 were induced and ER-PM contact increased dramatically. These results support a model in which ER-PM contact sites provide a nexus for coordinating the complex interrelationship between sterols, sphingolipids, and phospholipids that maintain PM composition and integrity.

Highlights

  • Most lipids are synthesized in the endoplasmic reticulum (ER) and distributed to other membranes by non-vesicular mechanisms

  • We find that whereas the bidirectional transport of sterols between the ER and plasma membrane (PM) is unaffected in these cells, sterols within the PM are disorganized due to disruptions in phospholipid biosynthesis that alter PM lipid composition

  • We propose that ER-PM contacts do not play a major role as physical conduits for lipid exchange but rather serve as regulatory interfaces to integrate lipid synthesis pathways

Read more

Summary

Introduction

Most lipids are synthesized in the endoplasmic reticulum (ER) and distributed to other membranes by non-vesicular mechanisms. An attractive hypothesis is that non-vesicular lipid transport and lipid biosynthetic and regulatory pathways intersect at ER-PM membrane contact sites (MCSs), where protein tethers retain the ER and PM within about 15–60 nm of each other [4,5,6,7,8,9]. In this view, ER-PM MCSs would serve as a nexus, coordinating requirements in the PM for lipids with their production in the ER [3, 9]. We report on the interplay between sterol and phospholipid homeostasis at ER-PM MCSs

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call