Abstract

Endoplasmic Reticulum Stress (ERS) is a key factor in the development of Non-Alcoholic Fatty Liver Disease (NAFLD) in diabetes. The current study aimed to examine the effects of exercise and IGF-I on ERS markers in liver tissue. Rats were divided into five groups (n = 8 per group), including control (CON), diabetes (DIA), diabetes + exercise (DIA + EX), diabetes + IGF-I (DIA + IGF-I), and diabetes + exercise + IGF-I (DIA + EX + IGF-I). Type 1 diabetes was induced by an I.P. injection of streptozotocin (60 mg/kg). After 30 days of treatment with exercise or IGF-I alone or in combination, liver tissue was assessed for caspase 12, 8, and CHOP protein levels, and expression of ERS markers (ATF-6, PERK, IRE-1A) and lipid metabolism-involved genes (FAS, FXR, SREBP-1c) by western immunoblotting. In addition, for the evaluation of histopathological changes in the liver, Hematoxylin - Eosin and Masson's Trichrome staining were done. Compared to the control group, diabetes significantly caused liver fibrosis, induced ERS, increased caspase 12 and 8 levels in the liver, and changed expression levels of genes associated with lipid metabolism, including FAS, FXR, and SREBP-1c. Treatment with either exercise or IGF-I reduced fibrosis levels suppressed ER stress markers and apoptosis, and improved expression of genes associated with lipid metabolism. In addition, simultaneous treatment with exercise and IGF-I showed a synergistic effect compared to DIA + E and DIA + IGF-I. The results suggest that IGF-1 and exercise reduced liver fibrosis possibly by reducing ERS, creating adaptive ER stress status, and improving protein folding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call