Abstract

Acute cadmium (Cd) exposure is a significant risk factor for renal injury and lacks effective treatment strategies. Ferroptosis is a recently identified iron-dependent form of nonapoptotic cell death mediated by membrane damage resulting from lipid peroxidation, and it is implicated in many diseases. However, whether ferroptosis is involved in Cd-induced renal injury and, if so, how it operates. Here, we show that Cd can induce ferroptosis in kidney and renal tubular epithelial cells, as demonstrated by elevation of intracellular iron levels and lipid peroxidation, as well as impaired antioxidant production. Treatment with a ferroptosis inhibitor alleviated Cd-induced cell death. Intriguingly, we established that Cd-induced ferroptosis depended on endoplasmic reticulum (ER) stress, by demonstrating that Cd activated the PERK-eIF2α-ATF4-CHOP pathway and that inhibition of ER stress reduced ferroptosis caused by Cd. We further found that autophagy was required for Cd-induced ferroptosis because the inhibition of autophagy by chloroquine mitigated Cd-induced ferroptosis. Furthermore, we showed that iron dysregulation by ferritinophagy contributed to Cd-induced ferroptosis, by showing that the iron chelator desferrioxamine alleviated Cd-induced cell death and lipid peroxidation. In addition, ER stress is likely activated by MitoROS which trigger autophagy and ferroptosis. Collectively, our results indicate that ferroptosis is involved in Cd-induced renal toxicity and regulated by the MitoROS-ER stress-ferritinophagy axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.