Abstract
Endoplasmic reticulum stress (ERS) has been found in non-alcoholic fatty liver disease. The study was to further explore the mechanistic relationship between ERS and lipid accumulation. To induce ERS, the hepatoblastoma cell line HepG2 and the normal human L02 cell line were exposed to Tg for 48 h. RT-PCR and Western blot were performed to evaluate glucose-regulated protein (GRP-78) expression as a marker of ERS. ER ultrastructure was assessed by electron microscopy. Triglyceride content was examined by Oil Red O staining and quantitative intracellular triglyceride assay. The hepatic nuclear sterol regulatory element-binding protein (SREBP-1c), liver X receptor (LXRs), fatty acid synthase (FAS), and acetyl-coA carboxylase (ACC1) expressions were examined by real-time PCR and Western blot. 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF) was used to inhibit S1P serine protease inhibitor, and SREBP-1c cleavage was evaluated under ERS. SREBP-1c was knockdown and its effect on lipid metabolism was observed. Tg treatment upregulated GRP-78 expression and severely damaged the ER structure in L02 and HepG2 cells. ERS increased triglyceride deposition and enhanced the expression of SREBP-1c, FAS, and ACC1, but have no influence on LXR. AEBSF pretreatment abolished Tg-induced SREBP-1c cleavage. Moreover, SREBP-1c silencing reduced triglycerides and downregulated FAS expression. Pharmacological ERS induced by Tg leads to lipid accumulation through upregulation of SREBP-1c in L02 and HepG2 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.