Abstract
Endoplasmic reticulum (ER) stress is associated with development and progression of fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). ER stress was first implicated in the pathogenesis of IPF >15 years ago with the discovery of disease-causing mutations in surfactant protein C, which result in a misfolded gene product in type II alveolar epithelial cells (AECs). ER stress and the unfolded protein response (UPR) have been linked to lung fibrosis through regulation of AEC apoptosis, epithelial-mesenchymal transition, myofibroblast differentiation, and M2 macrophage polarization. Although progress has been made in understanding the causes and consequences of ER stress in IPF and a number of chronic fibrotic disorders, further studies are needed to identify key factors that induce ER stress in important cell types and define critical down-stream processes and effector molecules that mediate ER stress-related phenotypes. This review discusses potential causes of ER stress induction in the lungs and current evidence linking ER stress to fibrosis in the context of individual cell types: AECs, fibroblasts, and macrophages. As our understanding of the relationship between ER stress and lung fibrosis continues to evolve, future studies will examine new strategies to modulate UPR pathways for therapeutic benefit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.