Abstract

The Endoplasmic reticulum (ER), an indispensable sub-cellular component of the eukaryotic cell carries out essential functions, is critical to the survival of the organism. The chaperone proteins and the folding enzymes which are multi-domain ER effectors carry out 3-dimensional conformation of nascent polypeptides and check misfolded protein aggregation, easing the exit of functional proteins from the ER. Diverse conditions, for instance redox imbalance, alterations in ionic calcium levels, and inflammatory signaling can perturb the functioning of the ER, leading to a build-up of unfolded or misfolded proteins in the lumen. This results in ER stress, and aiming to reinstate protein homeostasis, a well conserved reaction called the unfolded protein response (UPR) is elicited. Equally, in protracted cellular stress or inadequate compensatory reaction, UPR pathway leads to cell loss. Dysfunctional ER mechanisms are responsible for neuronal degeneration in numerous human diseases, for instance Alzheimer's, Parkinson's and Huntington's diseases. In addition, mounting proof indicates that ER stress is incriminated in psychiatric diseases like major depressive disorder, bipolar disorder, and schizophrenia. Accumulating evidence suggests that pharmacological agents regulating the working of ER may have a role in diminishing advancing neuronal dysfunction in neuropsychiatric disorders. Here, new findings are examined which link the foremost mechanisms connecting ER stress and cell homeostasis. Furthermore, a supposed new pathogenic model of major neuropsychiatry disorders is provided, with ER stress proposed as the pivotal step in disease development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.