Abstract

Endoplasmic reticulum (ER) stress results in the activation of the unfolded protein response (UPR), a process that is involved in the pathogenesis of many inflammatory diseases. However, the role of ER stress in chronic rhinosinusitis with nasal polyps (CRSwNP) has yet to be elucidated. In this study, we found that the protein expression levels of a range of ER stress regulators, including p-PERK, ATF4, ATF6 and XBP1s, were significantly increased in CRSwNP compared to controls. Importantly, the expression of ATF4 and XBP1s was positively correlated with heightened inflammation in CRSwNP. In human nasal epithelial cells, the ER stress inducer tunicamycin (TM) could potentiate Toll-like receptors (TLRs) induced proinflammatory cytokines production. Furthermore, we found that the silencing of XBP1, but not ATF4 or ATF6, abrogated the proinflammatory effect of TM. Mechanistically, ER stress did not affect the NF-κB, MAPK or IRF3 signaling pathways. However, the ER stress regulator XBP1s was able to bind directly to the promoter region of inflammatory genes to modulate gene transcription. Besides, the commensal bacteria Staphylococcus aureus and several inflammatory factors, such as IL4, IL13, IL17 and IFNγ, could induce ER stress in epithelial cells. Collectively, ER stress plays a crucial role in facilitating TLR-induced inflammation. Targeting XBP1 can inhibit the inflammatory response, thus offering a potential approach to treat CRSwNP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.