Abstract

The present study was conducted to investigate the effect of Cu exposure on endoplasmic reticulum (ER) stress and Ca2+ homeostasis, and also explore the underlying mechanism of the ER stress and Ca2+ homeostasis in the Cu-induced change of hepatic lipid metabolism in javelin goby Synechogobius hasta. To this end, four experiments were conducted. In experiment 1, the full-length cDNA sequences of two ER molecular chaperones [glucose-regulated protein 78 (GRP78) and calreticulin (CRT)] and three ER stress sensors [PKR-like ER kinase (PERK), inositol requiring enzyme (IRE)-1α, and activating transcription factor (ATF)-6α] cDNAs were firstly characterized from S. hasta. The predicted amino acid sequences for the S. hasta GRP78, CRT, PERK, IRE-1α and ATF-6α revealed that the proteins contained all of the structural features characteristic in other species. mRNAs of the five genes were expressed in various tissues, but their mRNA levels varied among tissues. In experiment 2, S. hasta were exposed to four waterborne Cu concentrations (control, 19μg/l, 38μg/l, and 57μg/l, respectively) for 60days. Cu exposure evoked ER stress in liver of S. hasta in a time- and concentration-course change. In experiment 3, specific inhibitors, 2-aminoethyldiphenyl borate (2-APB) and dantrolene, were used to explore whether Ca2+ release from ER was involved in the Cu-induced ER stress change. Dantrolene and 2-APB prevented Cu-induced intracellular Ca2+ elevation, which demonstrated the release of Ca2+ from the ER was mediated by both RyR and IP3R. In experiment 4, a chemical chaperone, 4-phenyl butyric acid (4-PBA), was used to demonstrate whether Cu-induced alteration in lipid metabolism was suppressed through the attenuation of ER stress. Cu exposure evoked ER stress and sterol-regulator element-binding protein-1c (SREBP-1c) activation in hepatocytes of S. hasta, resulting in dysregulation of hepatic lipid metabolism. 4-PBA attenuated the Cu-induced elevation of mRNA expression of ER stress-related genes. For the first time, our study cloned GRP78, CRT, PERK, IRE-1α and ATF-6α genes in S. hasta and demonstrated their differential expression among tissues. Moreover, the study demonstrated the molecular mechanism by which ER stress might underlie the change of lipid metabolism induced by Cu in S. hasta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call