Abstract

The endoplasmic reticulum is the cellular compartment in which secretory proteins are synthesized and folded. Perturbations of endoplasmic reticulum homeostasis lead to the accumulation of unfolded proteins. The activation of the unfolded protein response during endoplasmic reticulum stress transmits information about the status of protein folding to the cytosol and nucleus. The unfolded protein response leads to the upregulation of genes encoding endoplasmic reticulum chaperones, attenuation of translation, and initiation of the endoplasmic reticulum quality control system to restore endoplasmic reticulum homeostasis. When the unfolded protein response is insufficient to rebuild the steady state in endoplasmic reticulum, the programmed cell death or apoptosis would be initiated, by triggering cell injuries, even to cell death through apoptosis signals. In this review, we briefly outline research on the chaperones and foldases conserved in eukaryotes and plants, and describe the general principles and mechanisms of the endoplasmic reticulum quality control and the unfolded protein response. We describe the current models for the molecular mechanism of the unfolded protein response in plants, and emphasize the role of inositol requiring enzyme-1-dependent network in the unfolded protein response. Finally, we give a general overview of the directions for future research on the unfolded protein response in plants and its role in the response to environmental stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call