Abstract
Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. Three examples of yeast cell death associated with the ER will be highlighted here including inositol starvation, lipid toxicity, and the inhibition of N-glycosylation. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death.
Highlights
In recent years, it has become increasingly clear that yeast cells undergo programed cell death (PCD) in response to a variety of intrinsic and extrinsic stimuli, with characteristic markers associated with apoptosis in mammalian cells (Carmona-Gutierrez et al, 2010)
Though significant research has focused on mitochondrial involvement in yeast PCD (Braun and Westermann, 2011), recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has implicated the endoplasmic reticulum (ER) in yeast PCD
This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast
Summary
Reviewed by: Campbell Gourlay, University of Kent, UK Joris Winderickx, Catholic University of Leuven, Belgium Mark Ramsdale, University of Exeter, UK. Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.