Abstract
The bacterial endophyte Pseudomonas fluorescens ALEB7B significantly enhances photosynthate accumulations in Atractylodes lancea. These carbohydrates are preferentially used by the host plant to synthesize secondary metabolites, rather than to increase plant biomass accumulation. Mechanisms underlying the allocation of endophyte–increased carbohydrate in different plant metabolic processes are largely unknown. We have studied how P. fluorescens ALEB7B enhances photosynthate accumulation and how bacterial elicitors regulate metabolic flux and increase medicinal sesquiterpenoid formation in A. lancea using the sterile tissue culture plantlets. P. fluorescens ALEB7B enhances plant photosynthate accumulation by synthesizing and secreting indole–3–acetic acid, which has been demonstrated using high–performance liquid chromatography analysis. The increased endogenous indole–3–acetic acid promotes plant root development and then assimilation. Increased carbohydrates provide the material basis for the formations of terpenoid hydrocarbon scaffolds, which has been proved using gas chromatography analysis. Further, protein and polysaccharide elicitors secreted by P. fluorescens ALEB7B have been separated and purified from the bacterial fermentation broth, which have been applied to A. lancea plantlets. Both elicitors can stimulate the conversions of terpenoid hydrocarbon scaffolds to oxygenous sesquiterpenoids, the active medicinal ingredients in A. lancea, by triggering the oxidative burst in planta. Moreover, this study separates an ABC transporter substrate–binding protein from protein elicitors secreted by P. fluorescens ALEB7B with an ÄKTA Prime Plus Purifier System and firstly shows that this protein is essential to induce oxygenous sesquiterpenoid accumulation in A. lancea. This study provides new perspectives for mechanisms of medicinal oxygenous terpenoid synthesis, which has important reference values to the cultivation of medicinal plants that have terpenoids as their active ingredients, such as Artemisia annua and Taxus chinensis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.