Abstract

Endophytic fungi live within plant tissues without causing any harm to the host, promote its growth, and induce systemic resistance against pests and diseases. To mitigate the challenging concealed feeding behavior of immature stages of Tuta absoluta in both tomato (Solanum lycopersicum) and nightshade (Solanum scabrum) host plants, 15 fungal isolates were assessed for their endophytic and insecticidal properties. Twelve isolates were endophytic to both host plants with varied colonization rates. Host plants endophytically-colonized by Trichoderma asperellum M2RT4, Beauveria bassiana ICIPE 706 and Hypocrea lixii F3ST1 outperformed all the other isolates in reducing significantly the number of eggs laid, mines developed, pupae formed and adults emerged. Furthermore, the survival of exposed adults and F1 progeny was significantly reduced by Trichoderma sp. F2L41 and B. bassiana isolates ICIPE 35(4) and ICIPE 35(15) compared to other isolates. The results indicate that T. asperellum M2RT4, B. bassiana ICIPE 706 and H. lixii F3ST1 have high potential to be developed as endophytic-fungal-based biopesticide for the management of T. absoluta.

Highlights

  • Vegetable production is one of the most viable horticultural sub-sector in Africa and is considered an important route out of poverty for smallholder f­armers[1]

  • Irrespective of the host plants, M. anisopliae isolates ICIPE 30, ICIPE 69 and ICIPE 7 failed to colonize the various plant parts while the remaining 12 isolates were successfully recovered from tomato and nightshade host plant parts (Fig. 1A,B)

  • Among the most potent endophytic fungal isolates, we found that T. asperellum M2RT4, B. bassiana ICIPE 706 and H. lixii F3ST1 significantly reduced oviposition of the pest

Read more

Summary

Introduction

Vegetable production is one of the most viable horticultural sub-sector in Africa and is considered an important route out of poverty for smallholder f­armers[1]. Klieber and R­ eineke[30] revealed that endophytic fungi inoculated in tomato plants mediated systemic resistance against T. absoluta and played a significant role in reducing feeding activity of the immature stage of the pest. This pest control strategy has added a new dimension to the use of fungal entomopathogens against cryptic insect pests whose life cycle limits the effectiveness of chemical insecticides and other control m­ ethods[18,31]. To tackle the concealed feeding behavior of the larval stage of T. absoluta, the objective of this research was to assess the endophytic properties of fifteen fungal isolates on both tomato and nightshade plants and evaluate their insecticidal activity or pathogenicity with their ability to induce systemic resistance against the pest with the aim to use the potent fungal endophytic-based biopesticide as a component of a Tuta-IPM

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call