Abstract

Simple SummaryPlant–microorganism associations date back more than 400 million years. Plants host microorganisms that establish many different relationships with them, some negative and others very positive for both organisms. A type of this relationship is established with microorganisms that live inside them, known as endophytic microorganisms; they can include bacteria, yeasts, and fungi. In this study, we isolate endophytic bacteria from maize plants, and we characterize them in order to check their potential for being used as biocontrol agents against Botrytis cinerea, one of the most important phytopathogenic fungi in the world. The endophytic bacteria showed this antagonistic effect during in vitro assay and also during in vivo assay in Phaseolus vulgaris. At the same time, they showed the capacity for promoting growth in Zea mays plants.Plant diseases are one of the main factors responsible for food loss in the world, and 20–40% of such loss is caused by pathogenic infections. Botrytis cinerea is the most widely studied necrotrophic phytopathogenic fungus. It is responsible for incalculable economic losses due to the large number of host plants affected. Today, B. cinerea is controlled mainly by synthetic fungicides whose frequent application increases risk of resistance, thus making them unsustainable in terms of the environment and human health. In the search for new alternatives for the biocontrol of this pathogen, the use of endophytic microorganisms and their metabolites has gained momentum in recent years. In this work, we isolated endophytic bacteria from Zea mays cultivated in Colombia. Several strains of Bacillus subtilis, isolated and characterized in this work, exhibited growth inhibition against B. cinerea of more than 40% in in vitro cultures. These strains were characterized by studying several of their biochemical properties, such as production of lipopeptides, potassium solubilization, proteolytic and amylolytic capacity, production of siderophores, biofilm assays, and so on. We also analyzed: (i) its capacity to promote maize growth (Zea mays) in vivo, and (ii) its capacity to biocontrol B. cinerea during in vivo infection in plants (Phaseolus vulgaris).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.