Abstract

Plants harbor diverse microbial communities that colonize both below-ground and above-ground organs. Some bacterial members of these rhizosphere and phyllosphere microbial communities have been shown to contribute to plant defenses against pathogens. In this study, we characterize the pathogen-inhibiting potential of 78 bacterial isolates retrieved from endophytic and epiphytic communities living in the leaves of three grapevine cultivars. We selected two economically relevant pathogens, the fungus Botrytis cinerea causing gray mold and the oomycete Phytophthora infestans, which we used as a surrogate for Plasmopara viticola causing downy mildew. Our results showed that epiphytic isolates were phylogenetically more diverse than endophytic isolates, the latter mostly consisting of Bacillus and Staphylococcus strains, but that mycelial inhibition of both pathogens through bacterial diffusible metabolites was more widespread among endophytes than among epiphytes. Six closely related Bacillus strains induced strong inhibition (>60%) of Botrytis cinerea mycelial growth. Among these, five led to significant perturbation in spore germination, ranging from full inhibition to reduction in germination rate and germ tube length. Different types of spore developmental anomalies were observed for different strains, suggesting multiple active compounds with different modes of action on this pathogen. Compared with B. cinerea, the oomycete P. infestans was inhibited in its mycelial growth by a higher number and more diverse group of isolates, including many Bacillus but also Variovorax, Pantoea, Staphylococcus, Herbaspirillum, or Sphingomonas strains. Beyond mycelial growth, both zoospore and sporangia germination were strongly perturbed upon exposure to cells or cell-free filtrates of selected isolates. Moreover, three strains (all epiphytes) inhibited the pathogen’s growth via the emission of volatile compounds. The comparison of the volatile profiles of two of these active strains with those of two phylogenetically closely related, inactive strains led to the identification of molecules possibly involved in the observed volatile-mediated pathogen growth inhibition, including trimethylpyrazine, dihydrochalcone, and L-dihydroxanthurenic acid. This work demonstrates that grapevine leaves are a rich source of bacterial antagonists with strong inhibition potential against two pathogens of high economical relevance. It further suggests that combining diffusible metabolite-secreting endophytes with volatile-emitting epiphytes might be a promising multi-layer strategy for biological control of above-ground pathogens.

Highlights

  • Plants are densely colonized by a variety of microbes (Compant et al, 2019), some of which – the epiphytes – stay on the surface of plant organs, while others are able to penetrate further inside the plants and are called endophytes (Hardoim et al, 2015)

  • The 16S rRNA sequencing of the 194 bacterial strains isolated from grapevine leaf wash off (= epiphytes) and from surface-sterilized leaves (= endophytes) revealed 78 non-redundant strains

  • The diversity on genus level was much lower among endophytes than among epiphytes (Figures 1, 2): except for three Micrococcus, two Paenibacillus strains and one Erwinia strain, most endophytes belonged to the Bacillus or Staphylococcus genera

Read more

Summary

Introduction

Plants are densely colonized by a variety of microbes (Compant et al, 2019), some of which – the epiphytes – stay on the surface of plant organs, while others are able to penetrate further inside the plants and are called endophytes (Hardoim et al, 2015). While the functional roles of phyllosphere inhabitants are still less well understood than those of rhizosphere microbes, few reports have shown that they significantly contribute to plant health (Innerebner et al, 2011; Ritpitakphong et al, 2016). It would seem useful for the plant to be able to count on local defenses provided by phyllosphere microbes to fend off pathogens attacking leaves, in addition to the systemic plant-encoded resistance triggered by root-colonizing microbes. The main aim of this study was to harness the potential of phyllosphere microbiota for protection against above-ground pathogens

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call