Abstract
In previous papers we described an extra recombination mechanism in T4 phage, which contributed to general recombination only when particular mutations were used as geneticmarkers (high recombination or HR markers), whereas it was practically inactive towards other rIIB mutations (low recombination or LR markers). This marker-dependent recombination pathway was identified as a repair of mismatches in recombination heteroduplexes. We suggested that the first step in this pathway, recognition and incision of the mismatch, is performed by endonuclease VII (endo VII) encoded by the T4 gene 49. In the present paper, we tested this hypothesis in vivo. We used an experimental model system that combines site-specific double-strand breaks with the famous advantages of the recombination analysis of bacteriophage T4 rII mutants. We compared recombination of homoallelic HR and LR markers in the S17 and S17 E727 background (amber mutations in the uvsX and in the uvsX and 49 genes, respectively). In S17-crosses, the HR and LR markers retain their respective high-recombination and low-recombination behavior. In S17 E727-crosses, however, the HR and LR markers show no difference in the recombination frequency and both behave as LR markers. We conclude that endo VII is the enzyme that recognizes mismatches in recombinational heteroduplexes and performs their incision. This role for endo VII was suggested previously from biochemical studies, but this is its first in vivo demonstration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.