Abstract

BackgroundEndovascular treatment has become the first-line strategy for peripheral arterial disease (PAD). Given the number of procedures required, any technology associated with a reduction in radiation exposure and contrast volume is highly relevant. In the present study, we evaluated whether two-dimensional (2D) fusion imaging could reduce the radiation exposure and contrast volume during endovascular treatment of occlusive PAD. MethodsOur consecutive, retrospective, single-center, nonrandomized comparative trial included patients with PAD at the femoral, popliteal, and/or tibial level, at any clinical stage, if they were candidates for endovascular revascularization. Patients were treated with or without the EndoNaut 2D fusion imaging system (Therenva, Rennes, France) in a nonhybrid room with the same Cios Alpha mobile C-arm (Siemens, Munich, Germany). The indirect dose-area product and contrast medium volume were recorded. ResultsBetween March 2018 and April 2020, 255 patients underwent endovascular femoropopliteal revascularization with (n = 124) or without (n = 131) 2D fusion imaging. The volume of injected contrast medium (34.7 ± 13.8 mL vs 51.3 ± 26.7 mL; P < .001) and dose-area product (8.9 ± 9.9 Gy/cm2 vs 13.5 ± 14.0 Gy/cm2; P = .003) were significantly lower for the 2D fusion imaging group than for the control group. A subgroup analysis of complex (TransAtlantic Inter-Society Consensus for the Management of Peripheral Arterial Disease C/D) lesions showed similar results. Stratification of the fusion imaging group into three subgroups, according to the procedure dates, showed no effect of a potential learning curve on the operative parameters. ConclusionsThe results from the present study showed a significant reduction in the contrast volume and radiation dose for endovascular treatment of PAD when applying 2D fusion imaging technology. Overall, a reduction of >30% was observed for both operative parameters, without excessive training requirements, highlighting the potential benefits of using 2D fusion imaging when performing endovascular revascularization for PAD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call