Abstract

Endometrial extracellular vesicles are essential in regulating trophoblasts' function. This study aims to investigate whether endometrial extracellular vesicles (EVs) from recurrent implantation failure (RIF) patients inhibit the proliferation, invasion, and migration of HTR8/SVneo cells. Eighteen RIF patients and thirteen fertile women were recruited for endometria collection. Endometrial cells isolated from the endometria were cultured and modulated by hormones, and the conditioned medium was used for EV isolation. EVs secreted by the endometrial cells of RIF patients (RIF-EVs) or fertile women (FER-EVs) were determined by Western blotting, nanoparticle tracking analysis, and transmission electron microscopy. Fluorescence-labeled EVs were used to visualize internalization by HTR8/SVneo cells. RIF-EVs and FER-EVs were co-cultured with HTR8/SVneo cells. Cell Counting Kit-8, transwell invasion, and wound closure assays were performed to determine cellular proliferation, invasion, and migration, respectively, in different treatments. RIF-EVs and FER-EVs were bilayer membrane vesicles, ranging from 100 to 150 nm in size, that expressed the classic EV markers Alix and CD9. RIF-EVs and FER-EVs were internalized by HTR8/SVneo cells within 2 h. The proliferation rate in the FER-EV group was significantly higher than that in the RIF-EV group at 20 μg/mL. Moreover, the invasion and migration capacity of trophoblast cells were decreased in the RIF-EV group relative to the FER-EV group at 20 μg/mL. Endometrial EVs from RIF patients inhibited the functions of trophoblasts by decreasing their proliferation, migration, and invasive capacity. Such dysregulations induced by RIF-EVs may provide novel insights for better understanding the pathogenesis of implantation failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.