Abstract
To establish a prognostic model for endometrial cancer (EC) that individualizes a risk and management plan per patient and disease characteristics. A multicenter retrospective study conducted in nine European gynecologic cancer centers. Women with confirmed EC between January 2008 to December 2015 were included. Demographics, disease characteristics, management, and follow-up information were collected. Cancer-specific survival (CSS) and disease-free survival (DFS) at 3 and 5 years comprise the primary outcomes of the study. Machine learning algorithms were applied to patient and disease characteristics. Model I: pretreatment model. Calculated probability was added to management variables (model II: treatment model), and the second calculated probability was added to perioperative and postoperative variables (model III). Of 1150 women, 1144 were eligible for 3-year survival analysis and 860 for 5-year survival analysis. Model I, II, and III accuracies of prediction of 5-year CSS were 84.88%/85.47% (in train and test sets), 85.47%/84.88%, and 87.35%/86.05%, respectively. Model I predicted 3-year CSS at an accuracy of 91.34%/87.02%. Accuracies of models I, II, and III in predicting 5-year DFS were 74.63%/76.72%, 77.03%/76.72%, and 80.61%/77.78%, respectively. The Endometrial Cancer Individualized Scoring System (ECISS) is a novel machine learning tool assessing patient-specific survival probability with high accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Gynecology & Obstetrics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.