Abstract

AimsElevated levels of circulating cholesterol are extrinsic factors contributing to the pathogenesis of sporadic Alzheimer's disease (AD). We showed previously that rabbits fed a cholesterol-enriched diet exhibited blood–brain barrier (BBB) dysfunction, increased accumulation of apolipoprotein B (ApoB) in brain neurons, and endolysosomes in brain had disturbed structures and functions. These effects were linked to increased amyloid beta (Aβ) production, increased tau-pathology, and disrupted synaptic integrity. Because pathological changes to endolysosomes represent a very early event in sporadic AD, we determined here the extent to which ApoB-containing LDL cholesterol altered the structure and function of endolysosomes and contributed to the development of AD-like pathology in primary cultured neurons. Main methodsCholesterol distribution and endolysosome morphology were determined histologically. Endolysosome pH was measured ratio-metrically with LysoSensor dye. Endolysosome enzyme activity was measured for acid phosphatase, cathepsins B and D, and beta-site APP cleaving enzyme 1 (BACE-1). AD-like pathologies, including increased production of Aβ, increased tau-pathology, and disrupted synaptic integrity were determined using ELISA, immunoblotting, and immunostaining techniques. Key findingsTreatment of neurons with ApoB-containing LDL cholesterol increased endolysosome accumulation of cholesterol, enlarged endolysosomes, and elevated endolysosome pH. In addition, ApoB-containing LDL cholesterol increased endolysosome accumulation of BACE-1, enhanced BACE-1 activity, increased Aβ levels, increased levels of phosphorylated tau, and decreased levels of synaptophysin. SignificanceOur findings suggest strongly that alterations in the structure and function of endolysosomes play a key role in the exhibition of pathological features of AD that result from neuronal exposure to ApoB-containing LDL cholesterol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.