Abstract
The activation of tumor-specific effector immune cells is key for successful immunotherapy and vaccination is a powerful strategy to induce such adaptive immune responses. However, the generation of effective anticancer vaccines is challenging. To overcome these challenges, a novel straight-forward strategy of adjuvant-induced tumor antigen assembly to generate nanovaccines with superior antigen/adjuvant loading efficiency is developed. To protect nanovaccines in circulation and to introduce additional functionalities, a biocompatible polyphenol coating is installed. The resulting functionalizable nanovaccines are equipped with a pH (low) insertion peptide (pHLIP) to facilitate endolysosomal escape and to promote cytoplasmic localization, with the aim to enhance cross-presentation of the antigen by dendritic cells to effectively activate CD8+ T cell. The results demonstrate that pHLIP-functionalized model nanovaccine can induce endolysosomal escape and enhance CD8+ T cell activation both in vitro and in vivo. Furthermore, based on the adjuvant-induced antigen assembly, nanovaccines of the clinically relevant tumor-associated antigen NY-ESO-1 are generated and show excellent capacity to elicit NY-ESO-1-specific CD8+ T cell activation, demonstrating a high potential of this functionalizable nanovaccine formulation strategy for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.