Abstract
The processes underlying endolymph volume regulation during osmotic disturbances were investigated in vivo using ionic volume markers. The markers utilized were tetramethylammonium (TMA +) or hexafluoroarsenate (AsF 6 −). Both ions were used in concentrations low enough not to be toxic, but readily detectable by ion-selective microelectrodes (typically < 1 mM). Two marker techniques were developed. In one, termed the ‘perfused volume marker’ (PVM) method, the marker was loaded into endolymph throughout the cochlea by perfusion of the perilymphatic space. Concentration changes of the marker were measured with a double-barreled ion-selective microelectrode. These recordings were insensitive to longitudinal movements of endolymph. The second technique, termed the ‘iontophoresed volume marker’ (IVM) method, utilized a localized, iontophoretic injection of marker into endolymph. In this method, marker changes were recorded from two ion-selective electrodes, one placed basal and one placed apical to the injection site. These data were used to compute changes in cross-sectional area and longitudinal movements of endolymph. Changes in endolymph volume were induced by perfusion of the perilymphatic space with hypertonic media. The endolymph potassium increase produced by osmotic dehydration was of similar magnitude and time course to that of a volume marker loaded by the PVM method. Using the IVM method, it was shown that these concentration increases arose by two distinct processes. One component was the area decrease of scala media. A second component was a small apically directed movement of endolymph during dehydration, thereby concentrating the available electrolytes within a smaller volume. This latter component was estimated to contribute approximately one third of the electrolyte increase during dehydration. Both the present and previous studies show that in the undisturbed state, longitudinal endolymph movements are extremely small and cannot make a significant contribution to ionic homeostasis. However, when endolymph volume is disturbed, longitudinal movements contribute to the electrolyte changes and are part of the compensation process. This study provides the first direct evidence supporting the long-standing hypotheses that local, radial homeostasis and longitudinal volume corrections both occur in the mammalian cochlea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.