Abstract
Nickel and palladium atoms with their closed-shell d(10) electronic configurations are encapsulated in the icosahedral clusters [Ni@Ni(10)E(2)(CO)(18)](4-)(E = Sb, Bi, Sb[rightward arrow]Ni(CO)(3), CH(3)Sn and n-C(4)H(9)Sn) and the geometrically related pentagonal antiprismatic cluster Pd@Bi(10)(4+) found in Bi(14)PdBr(16). Such endohedral d(10) atoms in pentagonal antiprismatic clusters are donors of zero skeletal electrons and interact only weakly with the atoms in the surrounding polyhedron so that they may be regarded as analogous to endohedral noble gases in fullerenes such as He@C(60). On the other hand, endohedral nickel and palladium atoms in 10- and 11-vertex flattened deltahedral bare metal clusters of group 13 metals without five-fold symmetry, such as Ni@E(10)(10-) found in Na(10)NiE(10)(E = Ga, In) and Pd@Tl(11)(7-) found in A(8)Tl(11)Pd (A = Cs, Rb, K), interact significantly with the cluster atoms, particularly those at the flattened vertices of the deltahedron. The role of endohedral d(10) atoms Ni and Pd in polyhedra with five-fold symmetry as "pseudo-noble-gases" can be related to their positions at the "composite divide" of the "Metallurgists' Periodic Table" proposed by H. E. N. Stone on the basis of alloy systematics as well as the equivalence of the five d orbitals in polyhedra with five-fold symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.