Abstract

The ganglioside patterns have been shown to dramatically change during cell proliferation and differentiation and in certain cell-cycle phases, brain development, and cancer malignancy. To investigate the significance of the ganglioside GM3 in cancer malignancy, we established GM3-reconstituted cells by transfecting the cDNA of GM3 synthase into a GM3-deficient subclone of the 3LL Lewis lung carcinoma cell line (Uemura, S. (2003) Glycobiology, 13, 207-216). The GM3-reconstituted cells were resistant to apoptosis induced by etoposide and doxorubicin. There were no changes in the expression levels of topoisomerase IIalpha or P-glycoprotein, or in the uptake of doxorubicin between the GM3-reconstituted cells and the mock-transfected cells. To understand the mechanism of the etoposide-resistant phenotype acquired in the GM3-reconstituted cells, we investigated their apoptotic signaling. Although no difference was observed in the phosphorylation of p53 at serine-15-residue site by etoposide between the GM3-reconstituted cells and mock-transfected cells, the activation of both caspase-3 and caspase-9 was specifically inhibited in the former. We found that the anti-apoptotic protein B-cell leukemia/lymphoma 2 (Bcl-2) was increased in the GM3-reconstituted cells. Moreover, wild-type 3LL Lewis lung carcinoma cells, which have an abundance of GM3, exhibited no DNA fragmentation following etoposide treatment and expressed higher levels of the Bcl-2 protein compared with the J5 subclone. Thus, these results support the conclusion that endogenously produced GM3 is involved in malignant phenotypes, including anticancer drug resistance through up-regulating the Bcl-2 protein in this lung cancer cell line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.