Abstract
Hydrogen peroxide (H(2)O(2)) is generated endogenously during execution of both intrinsic as well as extrinsic apoptotic programs suggesting that it may function as a secondary messenger in apoptotic pathways. In the present study, we investigated the role of endogenously generated H(2)O(2) by using two cell lines-HL-60 cells and its subclone, H(2)O(2) resistant HP100 cells overexpressing catalase (CAT). With the exception of CAT, we found no differences in the expression of other primary antioxidant enzymes (Cu/Zn-superoxide dismutase, Mn-superoxide dismutase, and glutathione peroxidase) or apoptosis-related proteins (Bcl-2 and Bax) in HP100 cells as compared with the parental HL-60 cells. Production of H(2)O(2) was readily detectable as early as 1 h after melphalan (Mel) exposure of HL-60 cells but not HP-100 cells. Biomarkers of apoptosis, such as release of cytochrome c, disruption of mitochondrial transmembrane potential, caspase-3 activation, and chromatin condensation, became apparent much later, 3 h and onward after Mel treatment of HL-60 cells. The emergence of essentially all biomarkers of apoptosis was dramatically delayed in HP100 cells as compared with HL-60 cells. A relatively minor phospholipid species, phosphatidylserine (PS), was markedly oxidized 3 h after Mel treatment in HL-60 cells (but not in HP100 cells) where it was significantly inhibited by exogenously added CAT. The two most abundant classes of membrane phospholipids, phosphatidylcholine and phosphatidyletanolamine, did not undergo any significant oxidation. PS oxidation took place 3 h after exposure of HL-60 cells to Mel and paralleled the appearance of cytochrome c in the cytosol. Neither cytochrome c release nor PS oxidation occurred in Mel-treated HP100 cells, indicating that both endogenous H(2)O(2) and cytochrome c were essential for selective PS oxidation detected in HL-60 cells. Mel-induced PS oxidation was also associated with externalization of PS on the surface of HL-60 cells. Given that 3-amino-1,2,4-triazole, a CAT inhibitor, suppressed the resistance of HP100 cells to apoptosis, production of reactive oxygen species, PS oxidation, and PS externalization induced by Mel, the results from the present study suggest that H(2)O(2) is critical for triggering the Mel-induced apoptotic program as well as PS oxidation and externalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.