Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of upper and lower motor neurons, a cell type that is intrinsically more vulnerable than other cell types to exogenous stress. The interplay between genetic susceptibility and environmental exposures to toxins has long been thought to be relevant to ALS. One cellular mechanism to overcome stress is the formation of small dense cytoplasmic domains called stress granules (SG) which contain translationally arrested mRNAs. TDP-43 (encoded by TARDBP) is an ALS-causative gene that we have previously implicated in the regulation of the core stress granule proteins G3BP and TIA-1. TIA-1 and G3BP localize to SG under nearly all stress conditions and are considered essential to SG formation. Here, we report that TDP-43 is required for proper SG dynamics, especially SG assembly as marked by the secondary aggregation of TIA-1. We also show that SG assembly, but not initiation, requires G3BP. Furthermore, G3BP can rescue defective SG assembly in cells depleted of endogenous TDP-43. We also demonstrate that endogenous TDP-43 and FUS do not have overlapping functions in this cellular process as SG initiation and assembly occur normally in the absence of FUS. Lastly, we observe that SG assembly is a contributing factor in the survival of neuronal-like cells responding to acute oxidative stress. These data raise the possibility that disruptions of normal stress granule dynamics by loss of nuclear TDP-43 function may contribute to neuronal vulnerability in ALS.

Highlights

  • Amyotrophic Lateral Sclerosis (ALS) is a late-onset neurodegenerative disease characterized by the selective loss of upper and lower motor neurons

  • We reported that stress granules (SG) in TAR DNA response element binding protein 43 (TDP-43) depleted cells assayed immediately after the stress were 43% smaller than control cells [12], but the number of SG per cell is comparable to siControl cells (73.4 ± 3.6 vs. 82.2 ± 6.4, p = 0.15)

  • It is well documented that following initial SG formation, SG slowly reduce in number but each individual SG increases in size before resolving

Read more

Summary

Introduction

Amyotrophic Lateral Sclerosis (ALS) is a late-onset neurodegenerative disease characterized by the selective loss of upper and lower motor neurons. It is inevitably fatal with patients experiencing a progressive and rapid paralysis owing to a relentless denervation of most muscles. In the case of acute oxidative stress, several small SG fuse into fewer but larger SG over the 60 min. This secondary aggregation is referred to as SG assembly [8]. SG are a transient mechanism to halt general protein translation and give translational priority to specific transcripts that are necessary for the cell to overcome the encountered stress [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call