Abstract

Degradation products of peptidoglycan, the universal bacterial cell wall constituent, were previously found in animal tissues and urine. Reassessment and quantitative analysis of available data lead to an original concept, i.e. that eukaryotic cells synthesize peptidoglycan. We present a model in which this endogenously synthesized peptidoglycan is essential for the processes of eukaryotic cell division and sleep induction in animals. Genes for peptidoglycan metabolism, like those for lysine biosynthesis in plants, are probably inherited from endosymbiotic bacteria, the ancestors of mitochondria and chloroplasts. Corollaries of this concept, i.e. roles for peptidoglycan metabolism in tumor formation and in the biological clock, are supported by abundant evidence. We propose that many interactions between bacteria and eukaryotes are conditioned by their common genetic heritage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.