Abstract

We have recently demonstrated that presynaptically located metabotropic glutamate (mGlu) autoreceptors regulate synaptic glutamate release both in vitro and in vivo. We now report a positive modulatory action of the sulphur-containing amino acids (SCAAs), L-cysteic acid (CA) and L-cysteine sulphinic acid (CSA), at presynaptic group I mGlu receptors, specifically of the mGlu5 subtype, acting to enhance synaptic glutamate release from the rat forebrain in vitro. Neuronal glutamate release was monitored using electrically-evoked efflux of preloaded [(3)H]-D-aspartate from rat forebrain hemisections. Both CA (3 - 100 muM) and CSA (1 - 100 microM), in addition to the selective group I mGlu receptor agonist, (S)-3,5-dihydroxyphenylglycine ((S)-DHPG), concentration-dependently enhanced electrically-stimulated efflux of [(3)H]-D-aspartate from the rat forebrain slices. Basal efflux of label remained unchanged. The inhibitory activity of the broad spectrum mGlu receptor antagonist, (+/-)-alpha-methyl-4-carboxyphenylglycine ((+/-)-MCPG; 200 microM), coupled with the inactivity of the selective mGlu1 receptor antagonists, (R,S)-1-aminoindan-1,5-dicarboxylic acid ((R,S)-AIDA; 100 - 500 microM) and the more potent (+)-2-methyl-4-carboxyphenylglycine (LY367385; 10 microM) against these responses, indicates an action of the SCAAs at the mGlu5 receptor subtype. This proposal is supported by the potent inhibition of these responses by the selective, non-competitive mGlu5 receptor antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP; 10 microM). The observed enhancement of the responses to high concentrations of CA by the selective mGlu5 receptor desensitization inhibitor, cyclothiazide (CYZ; 10 microM), is also consistent with this concept. Administration of the agonists in the presence of bovine serum albumin (BSA; 5 - 15 mg ml(-1)) markedly attenuated the positive modulatory responses observed, strongly supporting a role for arachidonic acid in the expression of these mGlu5 receptor-mediated responses. The regulatory actions of SCAAs on synaptic glutamate release demonstrated in the present study may provide a physiological function for these putative neurotransmitter amino acids in the mammalian brain. These central actions of the SCAAs may have wide-ranging implications for a range of neurological and neuropsychiatric disease states and their treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.