Abstract

Endogenous (or autonomous, or emergent) spatial pattern formation is a subject transcending a variety of sciences. In ecology, there is growing interest in how spatial patterns can 'emerge' from internal system processes and simultaneously affect those very processes. A classic situation emerges when a predator's focus on a dominant competitor releases competitive pressure on a subdominant competitor, allowing coexistence of the two. If this idea is formulated spatially, two interesting consequences immediately arise. First, a spatial predator/prey system may take the form of a Turing instability, in which an activator (the dispersing prey population) is contained by a repressor (the more rapidly dispersing predator population) generating a spatial pattern of clusters of prey and predators, and second, an indirect intransitive loop (where A beats B beats C beats A) emerges from the simple fact that the system is spatial. Two common invasive ant species, Wasmannia auropunctata and Solenopsis invicta, and the parasitic phorid flies of S. invicta commonly coexist in Puerto Rico. Emergent spatial patterns generated by the combination of the Turing mechanism and the indirect intransitive loop are likely to be common here. This theoretical framework and the realities of the natural history in the field could explain both the long-term coexistence of these two species, and the highly variable pattern of their occurrence across a large landscape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call