Abstract

BackgroundSmall noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs) are key gene regulators in eukaryotes, playing critical roles in plant development and stress tolerance. Trans-acting siRNAs (ta-siRNAs), which are secondary siRNAs triggered by miRNAs, and siRNAs from natural antisense transcripts (nat-siRNAs) are two well-studied classes of endo-siRNAs.ResultsIn order to understand sncRNAs’ roles in plant chilling response and stress acclimation, we performed a comprehensive study of miRNAs and endo-siRNAs in Cassava (Manihot esculenta), a major source of food for the world populations in tropical regions. Combining Next-Generation sequencing and computational and experimental analyses, we profiled and characterized sncRNA species and mRNA genes from the plants that experienced severe and moderate chilling stresses, that underwent further severe chilling stress after chilling acclimation at moderate stress, and that grew under the normal condition. We also included castor bean (Ricinus communis) in our study to understand conservation of sncRNAs. In addition to known miRNAs, we identified 32 (22 and 10) novel miRNAs as well as 47 (26 and 21) putative secondary siRNA-yielding and 8 (7 and 1) nat-siRNA-yielding candidate loci in Cassava and castor bean, respectively. Among the expressed sncRNAs, 114 miRNAs, 12 ta-siRNAs and 2 nat-siRNAs showed significant expression changes under chilling stresses.ConclusionSystematic and computational analysis of microRNAome and experimental validation collectively showed that miRNAs, ta-siRNAs, and possibly nat-siRNAs play important roles in chilling response and chilling acclimation in Cassava by regulating stress-related pathways, e.g. Auxin signal transduction. The conservation of these sncRNA might shed lights on the role of sncRNA-mediated pathways affected by chilling stress and stress acclimation in Euphorbiaceous plants.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-634) contains supplementary material, which is available to authorized users.

Highlights

  • Small noncoding RNA, including microRNAs and endogenous small-interfering RNAs are key gene regulators in eukaryotes, playing critical roles in plant development and stress tolerance

  • MicroRNAs and endogenous small-interfering RNAs are two major classes of Small noncoding RNA (sncRNA). miRNAs are typically processed from RNA polymerase II transcripts that fold into hairpin structures [6]

  • We performed a comprehensive study of miRNAs, ta-siRNA and nat-siRNA in two agri-economic important Euphorbiaceous plants, Cassava (Manihot esculenta) and castor bean (Ricinus communis)

Read more

Summary

Introduction

Small noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs) are key gene regulators in eukaryotes, playing critical roles in plant development and stress tolerance. Trans-acting siRNAs (ta-siRNAs), which are secondary siRNAs triggered by miRNAs, and siRNAs from natural antisense transcripts (nat-siRNAs) are two well-studied classes of endo-siRNAs. Multicellular eukaryotes develop diverse small noncoding RNA (sncRNA) mechanisms for gene regulation at both DNA and RNA levels. MicroRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs) are two major classes of sncRNAs. miRNAs are typically processed from RNA polymerase II transcripts that fold into hairpin structures [6] In plants, such hairpin-structured pre-miRNAs are processed by DCL proteins in the nucleus to release ~22-nt doublestranded RNAs with ~2-nt 3′ overhangs, namely miRNA/. Trans-acting siRNAs (ta-siRNAs) and siRNAs from natural antisense transcripts (nat-siNATs) are two major classes of endo-siRNAs. Typically 21-nt in length and arranged in registers of 21-nt long phasing [7], tasiRNAs are generated by phased Dicer processing of noncoding TAS genes or mRNA transcripts initiated by miRNAs [13,14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call