Abstract

Bone fracture is a global healthcare issue for high rates of delayed healing and nonunions. Although n-3 polyunsaturated fatty acid (PUFA) is considered as a beneficial factor for bone metabolism, only few studies till date focused on the effects of n-3 PUFAs on fracture healing. In this study, we investigated the effect of endogenous n-3 PUFAs on fracture healing by measuring femur fracture repair in both fat-1 transgenic mice and WT mice. Proximal femoral fracture model was established in fat-1 transgenic mice and WT mice, respectively, and then the fracture was analyzed by using X-ray, micro-computed tomography (micro-CT), and histological assessment at 7, 14, 21, 28, and 35 days after fixation. The results showed that compared with WT mice, fat-1 mice exhibited acceleration in fracture healing through radiographic and histological analysis (18–21 days versus 21–28 days postfracture). Meanwhile, X-ray and micro-CT analysis that showed better remodeling callus formation were in the fat-1 group compared to WT group. Furthermore, histological analysis revealed that endogenous n-3 PUFAs promoted local endochondral ossification and accelerated the remodeling of calcified calluses after fracture. In conclusion, the present study indicated that endogenously produced n-3 PUFAs promote fracture healing process and accelerate bone remodeling in mice, and supplementation of n-3 PUFAs was positively associated with fracture healing.

Highlights

  • Fracture is delineated as a major healthcare problem worldwide within the rapid aging population

  • Omega-3 polyunsaturated fatty acids are a group of essential fatty acids which cannot be synthesized in sufficient amounts in the body, they can be supplemented through human diet [18]

  • The present study provided advanced evidence to indicate the positive role of n-3 polyunsaturated fatty acid (PUFA) in fracture repair and bone metabolism, the clear mechanism of n-3 PUFAs in modulating the bone repair was absent in our results; this point was the major limitation of our investigation

Read more

Summary

Introduction

Fracture is delineated as a major healthcare problem worldwide within the rapid aging population. Several researchers have concentrated on diet management for fracture healing, which includes intake of vitamin D and calcium for their modulatory roles in skeletal metabolism [2]. Arachidonic acid (AA), a polyunsaturated omega-6 fatty acid, acts as a precursor for the synthesis of lipid signaling molecules such as prostaglandins (PGs) and leukotrienes (LTs). This plays a negative role in fracture healing and AA inhibition, which resulted in the enhancement of fracture healing [4, 5]. Other FAs like eicosapentaenoic acid (EPA) (20:5; n-3) and docosahexaenoic acid (DHA) (22:6; n-3) were reported to reduce the risk of fractures [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call