Abstract

Well-known invertebrate ganglia (buccal ganglia of Helix pomatia, abdominal ganglia of Aplysia californica) were used to study the contribution of synaptic potentials, central pattern generators, and endogenously generated neuronal potentials to the development of epileptiform activity. Epileptiform activity which was induced with application of pentylenetetrazol (1 to 100 mM) or etomidate (0.12 to 1.0 mM) consisted of paroxysmal depolarization shifts (PDSs) recorded simultaneously from several identified neurons with sharp microelectrodes. With application of an epileptogenic drug, endogenous pacemaker potentials develop into PDSs. With increasing concentration of the drug, (i) amplitude of pacemaker-depolarizations and (ii) delay of pacemaker-repolarization increased progressively finally resulting in PDSs. Additionally, the activation characterists of currents shifted from between −50 and −40 mV (pacemaker potentials, control conditions) to between −100 and −40 mV (PDS, epileptic conditions). Only neurons which generated pacemaker potentials under control conditions could generate PDSs under epileptic conditions. Chemical synaptic inputs triggered or blocked pacemaker potentials as well as PDSs. Activities induced from central pattern generators were identified with simultaneous recordings from several identified neurons. The central pattern generators could trigger or block pacemaker potentials as well as PDSs. Results demonstrate that, in the used model nervous systems, pacemaker potentials which are generated by the single neurons are the physiologic basis of epileptic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call