Abstract

Expressions of vascular endothelial growth factor (VEGF) are increased in obese adipocytes and is secreted from obese adipose tissue through hypoxia-independent pathways. Therefore, we investigated the hypoxia-independent mechanism underlying increased expression and release of VEGF in obese adipocytes. We compared signal transduction pathways regulating VEGF with those regulating monocyte chemoattractant protein-1 (MCP-1), which is increased in obese adipocytes, in an in vitro model of artificially hypertrophied 3T3-L1 adipocytes preloaded with palmitate, without the influence of hypoxia. Palmitate-preloaded cells exhibited significantly enhanced oxidative stress (P < 0.01) and showed increased VEGF120 and MCP-1 release (P < 0.01, respectively), while endoplasmic reticulum (ER) stress was not induced. Increased VEGF120 release was significantly decreased with PI3K inhibitor LY294002 (P < 0.01). In addition, antioxidant N-acetyl-cysteine (NAC) markedly diminished not only VEGF120 secretion (P < 0.01) but also augmented Akt phosphorylation on Ser473 (P < 0.01). In contrast, increased MCP-1 release was suppressed with JNK inhibitor SP600125 and p38 MAPK inhibitor SB203580 (P < 0.01). VEGF120 release from hypertrophied adipocytes can be enhanced through PI3K pathways activated by oxidative stress but not by ER stress, suggesting that VEGF120 secretion is regulated through oxidative stress-dependent pathways distinct from those involved in MCP-1 release through either JNK or p38 MAPK activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.