Abstract

Speech is transient. To comprehend entire sentences, segments consisting of multiple words need to be memorized for at least a while. However, it has been noted previously that we struggle to memorize segments longer than approximately 2.7 s. We hypothesized that electrophysiological processing cycles within the delta band (<4 Hz) underlie this time constraint. Participants’ EEG was recorded while they listened to temporarily ambiguous sentences. By manipulating the speech rate, we aimed at biasing participants’ interpretation: At a slow rate, segmentation after 2.7 s would trigger a correct interpretation. In contrast, at a fast rate, segmentation after 2.7 s would trigger a wrong interpretation and thus an error later in the sentence. In line with the suggested time constraint, the phase of the delta-band oscillation at the critical point in the sentence mirrored segmentation on the level of single trials, as indicated by the amplitude of the P600 event-related brain potential (ERP) later in the sentence. The correlation between upstream delta-band phase and downstream P600 amplitude implies that segmentation took place when an underlying neural oscillator had reached a specific angle within its cycle, determining comprehension. We conclude that delta-band oscillations set an endogenous time constraint on segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.