Abstract

Although endogenous opioids have been implicated in the pathophysiology of spinal cord injury and brain ischemia, the role of specific opioid peptides and opiate receptors in the pathophysiology of traumatic brain injury remains unexplored. This study examined regional changes in brain opioid immunoreactivity and cerebral blood flow (CBF) after fluid-percussion brain injury in the cat and compared the effect of an opiate antagonist (Win 44,441-3 [Win-(-)]) with its dextroisomer Win 44,441-2 [Win-(+)] (which is inactive at opiate receptors) in the treatment of brain injury. Dynorphin A immunoreactivity (Dyn A-IR) but not leucine-enkephalin-like immunoreactivity accumulated in injury regions after traumatic injury; Dyn-IR increases also occurred predominantly in those areas showing significant decreases in regional CBF. Administration of Win-(-) but not Win-(+) or saline at 15 min after injury significantly improved mean arterial pressure, electroencephalographic amplitude, and regional CBF and reduced the severity and incidence of hemorrhage. Win-(-) also significantly improved survival after brain injury. Taken together, these findings suggest that dynorphin, through actions at opiate receptors, may contribute to the pathophysiology of secondary brain injury after head trauma and indicate that selective opiate-receptor antagonists may be useful in treatment of traumatic brain injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.