Abstract

Vagal afferents signal gastric acid challenge to the nucleus tractus solitarii of the rat brainstem. This study investigated whether nucleus tractus solitarii neurons in the mouse also respond to gastric acid challenge and whether this chemonociceptive input is modified by neuropeptide Y acting via neuropeptide Y receptors of type Y2 or Y4. The gastric mucosa of female mice was exposed to different concentrations of HCl or saline, excitation of neurons in the nucleus tractus solitarii visualized by c-Fos immunohistochemistry, gastric emptying deduced from the gastric volume recovery, and gastric lesion formation evaluated by planimetry. Relative to saline, intragastric HCl (0.15–0.35 M) increased the number of c-Fos-expressing cells in the nucleus tractus solitarii in a concentration-dependent manner, inhibited gastric emptying but failed to cause significant hemorrhagic injury in the stomach. Mice in which the Y2 or Y4 receptor gene had been deleted responded to gastric acid challenge with a significantly higher expression of c-Fos in the nucleus tractus solitarii, the increases amounting to 39 and 31%, respectively. The HCl-induced inhibition of gastric emptying was not altered by deletion of the Y2 or Y4 receptor gene. BIIE0246 (( S)- N 2-[[1-[2-[4-[( R, S)-5,11-dihydro-6(6 H)-oxodibenz[b,e] azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl] acetyl]- N-[2-[1,2-dihydro-3,5 (4 H)-dioxo-1,2-diphenyl-3 H-1,2,4-triazol-4-yl]ethyl]-argininamide; 0.03mmol/kg s.c.), a Y2 receptor antagonist which does not cross the blood–brain barrier, did not modify the c-Fos response to gastric acid challenge. The Y2 receptor agonist peptide YY-(3-36) (0.1mg/kg intraperitoneally) likewise failed to alter the gastric HCl-evoked expression of c-Fos in the nucleus tractus solitarii. BIIE0246, however, prevented the effect of peptide YY-(3-36) to inhibit gastric acid secretion as deduced from measurement of intragastric pH. The current data indicate that gastric challenge with acid concentrations that do not induce overt injury but inhibit gastric emptying is signaled to the mouse nucleus tractus solitarii. Endogenous neuropeptide Y acting via Y2 and Y4 receptors depresses the afferent input to the nucleus tractus solitarii by a presumably central site of action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.