Mathematical Population Studies | VOL. 11


Publication Date Apr 1, 2004


Population learning in dynamic economies traditionally has been studied in contexts where payoff landscapes are smooth. Here, dynamic population games take place over “rugged” landscapes, where agents are uncertain about payoffs from bilateral interactions. Notably, individual payoffs from playing a binary action against everyone else are uniformly distributed over [0, 1]. This random population game leads the population to adapt over time, with agents updating both actions and partners. Agents evaluate payoffs associated to networks thanks to simple statistics of the distributions of payoffs associated to all combinations of actions performed by agents out of the interaction set. Simulations show that: (1) allowing for endogenous networks implies higher average payoff compared to static networks; (2) the statistics used to evaluate payoffs affect convergence to steady-state; and (3) for statistics MIN or MAX, the likelihood of efficient population learning strongly depends on whether agents are change-averse or not in discriminating between options delivering the same expected payoff.


Individual Payoffs Bilateral Interactions Population Game Random Game Dynamic Games Efficient Learning Higher Average Payoff Binary Action Average Payoff Distributions Of Payoffs

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Nov 21, 2022 to Nov 27, 2022

R DiscoveryNov 28, 2022
R DiscoveryArticles Included:  2

No potential conflict of interest was reported by the authors. The conception and design of the study, acquisition of data, analysis and interpretatio...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.