Abstract
The development of multifunctional nanoplatforms that integrate both diagnostic and therapeutic functions has always been extremely desirable and challenging in the cancer combat. Here, we report an endogenous miRNA-activated DNA nanomachine (EMDN) in living cells for concurrent sensitive miRNA imaging and activatable gene silencing. EMDN is constructed by interval hybridization of two functional DNA monomers (R/HP and F) to a DNA nanowire generated by hybridization chain reaction. After the target cell-specific transportation of EMDN, intracellular let-7a miRNA initiates the DNA nanomachine by DNA strand displacement cascades, resulting in an amplified fluorescence resonance energy-transfer signal and the release of many free HP sequences. The restoration of HP hairpin structures further activates the split-DNAzyme to identify and cleave the EGR-1 mRNA to realize gene silencing therapy. The proposed EMDN shows efficient cell internalization, good biological stability, rapid reaction kinetics, and the ability to avoid false-positive signals, thus ensuring reliable miRNA imaging in living cells. Meanwhile, the controlled activation of the split-DNAzyme activity regulated by the intracellular specific miRNA may be promising in the precise treatment of cancer. Collectively, this strategy provides a valuable nanoplatform for early clinical diagnosis and activatable gene therapy of tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.