Trees | VOL. 4

Endogenous levels of oxygen, carbon dioxide and ethylene in stems of Norway spruce trees during one growing season

Publication Date Oct 1, 1990


The trees sampled in this study came from two stands of Norway spruce, Picea abies (L.) Karst., near Stockholm, Sweden, differing in mean age and height. Holes were bored perpendicular to the stem surface, and gas samples were taken from the outer part of the sapwood throughout one growing season. Endogenous levels of molecular oxygen (O2), carbon dioxide (CO2) and ethylene in the outer sapwood were determined by combined gas chromatography — mass spectrometry (GC-MS) and GC. O2 concentrations began to decrease as growth started in spring. The lowest levels (<5%) were recorded around mid-summer. In the younger stand concentrations remained below 5% until September. In October, O2 concentrations in the sapwood were similar to those of air. Concentrations of CO2 were below 1% in spring, but began to rise in May, peaking a month later at approximately 10%. Thereafter a slow decrease occurred until October, by which time levels had returned to those recorded in spring. Ethylene concentrations in the older stand reached 75 ppm early in May, while levels in the younger stand peaked at around 30 ppm later in May. Thereafter ethylene levels in both stands started to decrease down to ppb levels. The correlation between determined gas levels and physiological events associated with the seasonal growth cycle in temperate zones is discussed.


Combined Gas Chromatography Endogenous Levels Of Ethylene Stands Of Norway Spruce Seasonal Growth Cycle Levels Of Carbon Dioxide Outer Sapwood Levels Of Ethylene Gas Chromatography — Mass Spectrometry Ethylene Concentrations Carbon Dioxide

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.