Abstract

Peripheral inflammation evokes functional and biochemical changes in the periphery and spinal cord which result in central sensitization and hypersensitivity. Inhibitory control systems from the rostral ventromedial medulla (RVM) are also activated. The present study investigates whether endogenous kappa-opioid receptor (KOPr) systems contribute to these neuroadaptations. Inflammation was induced by intraplantar injection of complete Freund’s adjuvant (CFA) into one hindpaw. Mechanical and thermal thresholds were determined using the Von Frey and radiant heat tests, respectively. KOPr gene deletion in mice or systemic administration of the long-acting KOPr antagonist, norbinaltorphimine (norBNI) significantly exacerbated mechanical and thermal hypersensitivity of the ipsilateral, inflamed paw. Thermal and mechanical thresholds of the non-inflamed, contralateral hindpaw were unaffected by CFA treatment. However, gene deletion as well as norBNI treatment resulted in mechanical, but not thermal hypersensitivity of the non-inflamed paw. Similar results were obtained when norBNI was administered intrathecally or into the RVM in rats. These data demonstrate a previously unrecognized role of endogenous KOPr systems in inhibiting hyperalgesia during inflammation. Furthermore, they demonstrate that decreased KOPr activity in either the spinal cord or RVM not only enhances mechanical and thermal hyperalgesia of the inflamed limb but also leads to an unmasking of mechanical hyperalgesia at a site remote from inflammation. The differential effects of KOPr antagonism on mechanical versus thermal thresholds for the non-inflamed paw support the notion that distinct neuroanatomical or neurochemical mechanisms modulate the processing of thermal versus mechanical stimuli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.