Abstract

During embryogenesis, various cell types emerge simultaneously from their common progenitors under the influence of intrinsic signals. Human embryonic stem cells can differentiate to diverse cell types of three embryonic lineages, making them an excellent system for understanding the regulatory mechanism that maintains the balance of different cell types in embryogenesis. In this report, we demonstrate that insulin-like growth factor (IGF) proteins are endogenously expressed during differentiation, and their temporal expression contributes to the cell fate diversity in mesoderm differentiation. Small molecule LY294002 inhibits the IGF pathway to promote cardiomyocyte differentiation while suppressing epicardial and noncardiac cell fates. LY294002-induced cardiomyocytes demonstrate characteristic cardiomyocyte features and provide insights into the molecular mechanisms underlying cardiac differentiation. We further show that LY294002 induces cardiomyocytes through CK2 pathway inhibition. This study elucidates the crucial roles of endogenous IGF in mesoderm differentiation and shows that the inhibition of the IGF pathway is an effective approach for generating cardiomyocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.