Abstract
Chlamydia trachomatis infection in neonates, not adults, has been associated with the development of chronic respiratory sequelae. Adult chlamydial infections induce Th1-type responses that subsequently clear the infection, whereas the neonatal immune milieu in general has been reported to be biased toward Th2-type responses. We examined the protective immune responses against intranasal Chlamydia muridarum challenge in 1-day-old C57BL/6 and BALB/c mice. Infected C57BL/6 pups displayed earlier chlamydial clearance (day 14) compared with BALB/c pups (day 21). However, challenged C57BL/6 pups exhibited prolonged deficits in body weight gain (days 12-30) compared with BALB/c pups (days 9-12), which correlated with continual pulmonary cellular infiltration. Both strains exhibited a robust Th1-type response, including elevated titers of serum antichlamydial IgG2a and IgG2b, not IgG1, and elevated levels of splenic C. muridarum-specific IFN-gamma, not IL-4, production. Additionally, elevated IFN-gamma, not IL-4 expression, was observed locally in the infected lungs of both mouse strains. The immune responses in C57BL/6 pups were significantly greater compared with BALB/c pups after chlamydial challenge. Importantly, infected mice deficient in IFN-gamma or IFN-gamma receptor demonstrated enhanced chlamydial dissemination, and 100% of animals died by 2 wk postchallenge. Collectively, these results indicate that neonatal pulmonary chlamydial infection induces a robust Th1-type response, with elevated pulmonary IFN-gamma production, and that endogenous IFN-gamma is important in protection against this infection. The enhanced IFN-gamma induction in the immature neonatal lung also may be relevant to the development of respiratory sequelae in adult life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.