Abstract

Hydrogen sulfide (H2S) as an endogenous gaseous signaling molecule had been proved to play a vital role in gametes physiology, covering meiosis, maturation and aging. However, little is known about H2S involvement in embryonic development. The present study explored the positive effect of H2S on human early embryonic development. Results validated that the two H2S producing enzymes, CBS and CSE mRNA and proteins were identified in donated human cleavage and blastocyst-stage embryos. The l-cysteine incubation produced endogenous H2S in human blastocysts. NaHS positively affected in vitro blastulation. Single-cell RNA-seq analysis identified 228 differentially expressed genes (DEGs) after NaHS treatment versus the control. The Gene Ontology (GO) enrichment analysis of DEGs showed that genes for protein modification and metabolism were significantly enriched in the NaHS treatment group. For the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, 2-oxocarboxylic acid metabolism, glycosaminoglycan biosynthesis-keratan sulfate, steroid biosynthesis, carbon metabolism, and biosynthesis of amino acids were significantly enriched. Six DEGs, including Neural EGFL like 1 (NELL1), aconitase 1 (ACO1), phosphoglycerate mutase 1 (PGAM1), TP53 induced glycolysis regulatory phosphatase (TIGAR), UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 2 (B3GNT2), and carbohydrate Sulfotransferase 4 (CHST4) were validate by real-time RT-PCR. These findings suggest that H2S is a positive regulator of early embryonic development and may alter the transcription of embryonic genes for protein modification and metabolism in human embryos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call