Abstract

3T3 cells have a large, pericellular coat which contains 30 times more hyaluronate than the amount of cell surface hyaluronate associated with simian virus 40-transformed 3T3 (SV-3T3) cells. On the other hand, SV-3T3 cells have high affinity binding sites for exogenously added hyaluronate, whereas 3T3 cells have much lower affinity sites. Removal of cell surface hyaluronate from SV-3T3 cells by treatment with hyaluronidase caused a reproducible increase in their maximum binding capacity for exogenous hyaluronate but no significant change in binding affinity or specificity. For 3T3 cells, however, the maximum amount of binding decreased and the affinity of binding increased after hyaluronidase treatment. When endogenous cell surface hyaluronate was labeled metabolically and then the cells incubated in the presence of exogenous unlabeled hyaluronate, the labeled cell surface hyaluronate was quantitatively displaced from the SV-3T3 cells but was not displaced from the 3T3 cells. Chondroitin sulfate and heparin did not displace cell surface hyaluronate from either cell type. Membranes isolated from SV-3T3 cells bound hyaluronate specifically and with high affinity, whereas membranes from 3T3 cells did not consistently bind a significant amount of hyaluronate. We conclude from these studies that the retention of endogenous hyaluronate on the surface of SV-3T3 cells is mediated by binding sites similar to those detected by the addition of exogenous hyaluronate, and the mechanism of retention of endogenous hyaluronate on the surface of 3T3 cells differs from SV-3T3 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.